Back-propagation neural network for performance prediction in trickling bed air biofilter
نویسندگان
چکیده
Experimental studies were carried out with a laboratory-scale biotrickling filter to treat a gaseous stream contaminated with benzene, toluene and xylene (BTX) operated in a continuous mode. The biotrickling filter initially acclimatised with toluene was used to treat BTX compound individually at loading rates ranging from 7.2 g/mhr to 62.2 g/mhr, operated in a sequential mode. The results showed removal efficiencies as high as 100% when operated with toluene as the sole carbon source. An application of the back-propagation neural network to this experimental data is presented in this paper. The performance parameters namely, elimination capacity and removal efficiency were predicted from the experimental observation by selecting the appropriate network topology. The sensitive internal parameters of the network were selected using the 2 fractional factorial design. The neural-network-based model was found to be an efficient data-driven tool to predict the performance of a biotrickling filter.
منابع مشابه
Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملPrediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling
Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کامل